
il-AIl? 4!55 1

uuecz/ffIrq H/1



II II ~ __ 1111122,tl1s IIl

j . 1 12IlIN III -
jjjj

'- 

~~~~~~~tHhI ...... .. -,I 
B:.,i,,-.)i.;o4



VIPw

Lnf
3_1

lif

r

~e4 A, 3 >tg"Ivs

1:'

AM TM!

-:SCUN* AM XWJMr

low'

'Ply



UNCLASSIFIED 87
SECURITY CLASSIFICATION OF THIS PAGE (IWhe,. net, f.I }

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSEF.ORE COMPLE:TING. FORM
I REPORT NUMBER 2 GOVT ACCESSION NO. S RECUIENT'S CATALOG NUMBER'4 DA I L
4. TITLE (and Subtitle) S TYPE OF REPORT & PERIOD COVERED

A FINITE ELEMENT ANALYSIS OF ADHESIVELY BONDED Interim
COMPOSITE JOINTS INCLUDING GEOMETRIC NONLINEARITY.
NONLINEAR VISCOELASTICITY, MOISTURE DIFFUSION AND 6 PEFORMING OWG. REPORT NuMBE'
DELAYED FAILURE VPI-E-87-21; CAS/ESM-87-9

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

S. Roy and J. N. Reddy N00014-8?-K-0185

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT, PROJECT, TASK

Virginia Polytechnic Institute and State Universi y AREA & WORK UNIT NUMBERS
Blacksburg, Virginia 24061 NR 039-229/8-12-83 (431)

II. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Office of Naval Research October 1987
Mechanics Division (Code 430) 13 NUMBER OF PAGES

800 N. Quincy St., Arlington, VA 22217 86 + 3
14 MONITORING AGENCY NAME & A[lDRESS(if ifferent fr- ,' 'rr 1" ')f( , ) 15 'ECURITY CLASS. (of this rr ri)

UNCLASSIFIED

iSa. ECLASSIFICATION'DOON GRAOIN.

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repcrt)

This document has been approved for public release and sale; distribution
unlimited.

17. DISTRIBUTION STATEMENT (of the abstract ertred i,' W -; 2C. if 'fftreh, t from Repolrt)

18 SUPPLEMENTARY NOTES

I KEY WORDS (Continue on reverse side it neressary and dve, t:/v l, v, - :ner)

Adhesive joints, bonded joints, finite element analysis, composite joints,
moisture diffusion, delayed failure, nonlinear viscoelasticity, numerical
results.

Ili ABSTRACT (Continue on reverse side If necessary and identf. ' hl -rk totnbe)

A two-dimensional finite-element computational procedure is developed for an
analysis of adhesively bonded joints with nonlinear viscoelasticity, moisture
diffusion and delayed failure models. Effect of temperature and stress level
on the viscoelastic response is taken into account by a nonlinear shift factor
definition, and penetrant sorption is accounted via a nonlinear Fickean diffusi
model in which the diffusion coefficient is dependent on the penetrant concen-
tration and dilatational strain. A delayed failure criterion based on the
Reiner-Weisenberg failure theory is also included. Several example problems are

DD ,,'73 1473 r ,, N I ' IsC;I,<'B, ) _F UNCLASSIFIED

AT, PA F A P .....



(abstract continue from Item 20)

included. The results are discussed in view of the analytical or
exoerimental results available in the literature. The finite element
analysis results are in found to be in good agreement A



Department of the Navy
OFFICE OF NAVAL RESEARCH

Materials Division
Arlington, Virginia 22217

Contract NOO014-82-K-0185
Task No. NR 039-229/8-12-83 (430)

INTERIM REPORT

Research Report No. VPI-E-87.21

A FINITE ELEMENT ANALYSIS OF ADHESIVELY BONDED COMPOSITE JOINTS
INCLUDING GEOMETRIC NONLINEARITY, NONLINEAR VISCOELASTICITY,

MOISTURE DIFFUSION AND DELAYED FAILURE

by

S. Roy and J. N. Reddy
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

October 1987 -

Blacksburg, Virginia

1- .. .. .. . ... -- t

V": :, ( ----

Dist I V i,

1 -,
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SUMMARY

A two-dimensional finite-element computational procedure is
developed for the accurate analysis of the strains and stresses in
adhesively bonded joints. The adhesive layer is modeled using
Schapery's nonlinear single integral constitutive law for uniaxial and
multiaxial states of stress. Effect of temperature and stress level on
the viscoelastic response is taken into account by a nonlinear shift
factor definition. Penetrant sorption is accounted for by a nonlinear
Fickean diffusion model in which the diffusion coefficient is dependent
on the penetrant concentration and the dilatational strain. A delayed
failure criterion based on the Reiner-Weisenberg failure theory has also
been implemented in the finite element code. The applicability of the
proposed models is demonstrated by several numerical examples.
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1. INTRODUCTION

1.1 Preliminary Comments

During the last two years of research for the office of Naval

Research a finite-element computer program, NOVA, has been under

continuous development for an accurate analysis of adhesively bonded

joints (see 11,2]). The finite element program NOVA uses linearly

elastic elements to model the adherends. The adherends can be

represented as isotropic, orthotropic or laminated composite

materials. The large displacements and rotations experienced by the

adherends in many types of loading are accounted for by the updated

Lagrangian description of motion. The adhesive layer is modeled using A

special element that employs a multi-axial extension of Schapery's

nonlinear single integral stress-strain law as the constitutive

equation. The finite element formulation based on the updated

Lagrangian incremental equations is presented in detail in 1,21. The

element library contains an eight noded isoparametric element which

employs quadratic interpolation functions to represent the displacement

field as well as element geometry. The program can be used to conduct

plane stress, plane strain, or axisymmetric analysis of an adhesively

bonded structure subject to a time varying thermal and mechanical

loading. The program is modified recently to include a nonlinear

Fickean moisture diffusion model and a energy-based delayed failure

criterion. This report describes the theory,finite element formulation

and applications of NOVA to moisture diffusion and delayed failure

problems.



1.2. A Review of the Literature

Over the years several time-dependent failure criteria have been

proposed for predicting yield and fracture of polymeric materials.

Nagdhi and Murch [31 and Crochet [41 have used a modified von Mises

criteria for viscoelastic materials by assuming that the radius of the

yield surface depends upon the strain history. An energy based delayed

failure criterion for polymeric materials subjected to isothermal creep

was developed by Reiner and Weissenberg [51. According to this theory,

failure occurs when the stored deviatoric strain energy in a

viscoelastic material reaches a certain maximum value called the

resilience, which is a material constant. Bruller [61 and Hiel et al.

[71 applied the Reiner-Weisenberg failure criterion to various

viscoelastic materials, including composite laminates, and obtained good

agreement with experimental observations.

It is now well known that moisture diffusion can have a significant

effect on the stress field within an adhesive layer in a bond. Weitsman

181 used a variational method coupled with Fickean diffusion law to

study the interfacial stresses in viscoelastic adhesive-layers due to

moisture sorption. From the results of this uncoupled linear

thermoelastic analysis, he concluded that the location of the maximum

interfacial tensile stress depends on the geometry of the joint as well

as the progress of the diffusion process within the joint. Weitsman [91

used the correspondence principle to generate a linear viscoelastic

solution from the linear elastic analysis of moisture sorption within an

adhesive layer. He observed that the viscoelastic analysis predicts

detrimental effects due to stress reversdls caused by fluctuations in

relative humidity, that are not predicted in an elastic analysis.
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However, he acknowledged the omission of the effect of moisture content

on the viscoelastic response of the resins in his analysis.

Tobing, et al. 1101 used the finite element method to study the

micro-mechanical effect of moisture sorption in graphite-epoxy

composites. Using a constitutive equation based on the Flory-Huggins

lattice model for polymer solvent interactions, they concluded that the

stresses at the graphite-epoxy interface have a strong dependence on

moisture content, fiber spacing, and applied load.

Yaniv and Ishai (111 developed a linear viscoelastic closed form

solution as well as a nonlinear finite element solution algorithm to

study the hygrothermal effects in a bonded fiber-reinforced

plastic/aluminum system. [he linear solution was used for short-term

predictions at low strain levels, whereas the finite element solution

was used for long term predictions in which geometric and material

nonlinearities were taken into account. The authors observed that the

presence of moisture tends to considerably reduce the stress level in

the adhesive layer and may lead to significant variation in the time-

dependent deformation of the test specimen as compared to the dry state.

In the references cited above, various authors have underscored the

effect of moisture content on the viscoelastic response of the test

specimen. However, the effect of the viscoelastic stress field on the

diffusion coefficient was not considered. Lefebvre et al. 1121 extended

the free volume concept to define a diffusion coefficient that is a

function of temperature, dilatational strain and solvent

concentration. The proposed nonlinear diffusion model showed good

predictive capability for different values of temperature and moisture

conentrations. They concluded that in order to obtain an accurate

3



solution for the hygrothermal effects within an adhesive bond, the

nonlinear diffusion problem needs to be solved in conjunction with the

nonlinear viscoelastic boundary-value problem until convergence is

achieved.

2. NONLINEAR VISCOELASTIC FORMULATION

2.1 Introduction

A thermodynamically consistent theory for a single integral

representation of nonlinear viscoelasticity was first proposed by

Schapery [13]. The law can be derived from fundamental principles using

the concepts of irreversible thermodynamics. A comprehensive review of

the thermodynamics basis of Schapery's theory has been presented by Hiel

et al. 1141.

The following two sections deal with the review and application of

Schapery's single integral constitutive law to problems with uniaxial

and multiaxial states of stress, respectively. The constitutive

equations thus obtained are suitable for non-linear viscoelastic finite

element analysis.

2.2 Uniaxial Stress State

The uniaxial nonlinear viscoelastic constitutive equation of

Schapery 1131 can be written for an isotropic material as,

Et= gDt t o + g I tD(.v t s) d Ig2 Sld s  (2.1)
0 0 ~1 0 ''s ~2

In Eq. (2.1), t represents uniaxial kinematic strain at current time

t, ot is the Cauchy stress at time t, DO, is the instantaneous elasti-

compliance and AD(t) is a transient creep compliance function.

Superscript, t, denotes current time. The factor gt defines stress and

4



temperature effects on the instantaneous elastic compliance and is a

measure of state dependent reduction (or increase) in stiffness,

t = go 0,T). Transient (or creep) compliance factor g has similar

meaning, operating on the creep compliance component. The factor

g accounts for the influence of load rate on creep, and depends on

stress and temperature. The function jt represents a reduced time scale

parameter defined by,

t t (a s )-ds, (2.2)
0

where as  is a time scale 'shift factor'. For thermorheologicallyOT

simple materiQls, a = a(T) is a function of temperature T only. This

function modifies, in general, viscoelastic response as a function of

temperature and stress. Mathematically, asT shifts the creep data

parallel to the time axis relative to a master curve for creep strain

t t t at)versus time. In this model, four material parameters (g , g9 , 2 and d

are available to characterize the nonlinear behavior instead of only one

with the time scale shifting procedure of Knauss and Emri 115).

The transient creep compliance, AD( .), can be expressed in

exponential form as,

or ( - e( r (2.3)
r

where Dr and x r are constants. Substitution of Eq. (2.3) in Eq. (2.1)

gives,

tt t t t -r, s)
-go 00 1. YO Zr r 1 - e r ) d IgoSds. (2.4)

Letting the product gS be expressed as G and simplifying the

integrand on the right hand side of Eq. (2.4) yields,
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t tdt (t s)

Etgtflat +gt1 d~r iGsds -g1 tj Xn D e r( t- 0 ) d~ ds.o0 91r'rO s r 0 d

(2.5)

The third integration term on the right hand side of Eq. (2.5) is

now separated into two parts, the first part having limits from zero

to (t - At) and the second integral spanning only the current load step,

i.e., from (t - At) to t. Hence,
_ e-xr$t s ) dG s  t-At e-x r(4t- 4s)  d s dtt

e r w=) dG

o ds 0 ds

t -x (1 ts

+ jt e-x r ) dG ds. (2.6)

tds

The first term on the right hand side of Eq. (2.6) can be rewritten as,

t-At -x r( t S) dG s -r5 0t t-At

e s-- ds = e qr (2.7)0 d

where

A t = t-t (2.8)

t-At -t-At -k r( t-t_ s

q = -At e r -tS ds. (2.9)

The second integral on the right hand side of Eq. (2.6) is now

integrated by parts. To carry out the integration, it is assumed

that Gt varies linearly over the current time step At. Hence,

t e -r( t-4 s) dGS ds

- d e ds
ds r t-At t-At ds2  rt

6



I t

dGt II - e r (2.10)
dt Xr

In arriving at the second step, it is assumed that Gs is linear and

hence its second derivative is zero. Since Gt has been assumed to be a

linear function of time over the current load step, we can write

dt Gt _ t-at
d G - G -G (2.11)

dt 4 t

Substitution of Eq. (2.11) into Eq. (2.10) gives

t -r(t-
s  dG _ -Gt Gt-At et

t- e -- ds = { G r (2.12)t-tdsr

where,

t e_ r e Ar A
r - t (2.13)

r rt

Substituting Eq. (2.9) and Eq. (2.12) back into Eq. (2.5), and
writng t = t

writing Gt 2 , one obtains

t t t t t t T tt
C 0 1 2 r - 91 2  Dr r

r r - r' -

+ g1  % D 2 e qr . (2.14)
r

Defining instantaneous compliance Dt as the compliance term

t
multiplying the instantaneous stress ct , and the remaining terms in Eq.

(2.14) as hereditary strains Et, one can write

t t t

t  + Et F(c), (2.15)

where

0 tDt t t t t rB- t16)
1= goo + g0g2 r - g1g2  r (2.1

r



Et t t-Attt-At -Xr t qt-t (2.17)
1g{ Drg 2  r r .

Equation (2.15) expresses Schapery's single integral constitutive

law in terms of a stress operator that includes instantaneous compliance

and hereditary strains.

It is to be noted that the term qt-At in Eq. (2.17) is the rth

component of the hereditary integral series at the end of the previous

load step (i.e. at time equals t - At). The expression for the

hereditary integral at the end of the current load step (i.e. at time t)

can be derived in the form of a recurrence formula. From Fq. (2.9), one

can write

t t - r(t-) dGsq = e -ds
qr oeTds

t-Lt t s dGS s + -Xe r('ts) dG s

o e -s - ds+ :t , e. d s . (2 .18 )

0 t-At d

Using the results from Eqs. (2.9) and (2.12), the above equation can be

reduced to

t -er w t-At +[gt t At tqr =  r 2 -t -tirq + [~t -g2  -I~r~(2.19)

where 8t is defined by Eq. (2,13).r

2.3 Mult~axia! Stress State

For a thermorheologically simple anisotropic viscoelastic material

under a multiaxial state of stress, the constitutive law proposed by

Schapery 1131 is,

,)G R o
GR amn

e..- + . Aemn (2.20)
ij 3 i 30i.

8



t t
Ae t P's ) ( /aG)d- (2.21)

mnmn 3 T i j

where eij and aij are the components of the strain and stress tensors,

respectively; GR is the Gibbs free energy, aij and ASJ are the
Rj mn

components of the second and fourth order material property tensors,

respectively; and aG is a material kernel function defined in 113]. The

quantities GR, aG and 0mn are, in general, functions of ten

variables, aij and temperature T. Note that all repeated indices in

Eqs. (2.20) and (2.21) are to be summed over their range (1,2,3).

Due to the complex nature of Eq. (2.20) it is not possible to

determine the material properties in this equation from the uniaxial

tests outlined in 1131. However, it is possible to construct a set of

small strain, three-dimensional constitutive equations from Eq. (2.20),

which is consistent with the thermodynamic theory in 1131 and yet

enables all properties to be evaluated from uniaxial tests. The

assumptions which need to be made for this purpose are as follows:

(a) The Gibb's free energy GR is a quadratic function of stress,

(b) .. = .. (2.22)

When the free energy GR is a quadratic function of stress one has

- GR - mn~0) (2.23)
S mn

mn

where S. .(0) are the instantaneous components of the linear viscoelastic
13

creep compliance tensor. Equation (2.23) implies that the initial

response of the material is linearly elastic under suddenly applied

stresses, which is often the case for metals and plastics.

The second assumption, on the other hand, leads to the

linearization of the coefficient of the transient term in Eq. (2.20).

9



Mathematically, this is given by,

30 , if i = m and j n: { (2.24)
acij 0, if i m and j n

Equation (2.24) implies that the jump in strain due to load application

equals the jump when the load is removed. This behavior is exhibited by

some types of plastics [16).

Substituting Eqs. (2.23) and (2.24) in Eqs. (2.20) and (2.21), one

obtains

et  mn (oo
e S (O) + A(2.25)

t

i(0 t  
-) (g2mndT, (2.26)

where g = I/a7. Equation (2.25) is a set of three-dimensional

constitutive equations for anisostropic viscoelastic materials which

includes the nonlinear functions g2 and aT appearing in the uniaxial
2~ tT

relations (2.1) and (2.2). Note that the functions g and at are

expressed as a function of the octrahedral shear stress.

For a homogeneous isotropic nonlinear viscoelastic material, Eq.

(2.24) reduces to the form presented by Schapery ([131 and 1161),

t iJ! t t , t t 5 (2.27)ij2 + - (22mm2

where

t =  t T 3

iJ}'g 2'j= J(J)cij + 0 - ) (g2rij)d- (2.28)

0 t t 2ijaD

D - J 2 m = [D(O) J(O) +mm +
0

2- mm2 mm d

_LJ( ) (gI7T )d- (2.29)

10



t =f (as)- ds (2.30)
T

Expanding Eq. (2.27) term by term for the strains, one has

e1 + {D - Jfg 21 22+ + {D - J g2o3 3r . (2.31a)

Similarly,

t t . t tt
eg 2 DD -14 {g 033'

e22 (D J gi + 1 Og 2} + {0 - J}}gc 3J

2 2{J} ott12= g2'12}

e33  - fgtg2  + 1D - Ji g2 2 t I +0ltg 2c33 }. (2.31b)

The transient components of the creep and shear compliances can be

written in the form of the Prony series as,

D(,) 0 (1 - e r
r

' J(1 11:I e r'l, (2.32)

r
r

where and - are the reciprocal of the retardation times in creep andr r

shear respectively. Also, let,

D (O ) = D 0

J(O) = Jo (2.33)

Considering a term of the form 0 gt it in Eq. (2.31) and substituting

Eqs. (2.32) into Eq. (2.33) gives,

|t t t + It -D 11 -- e d

SDoij + f 0Dr' - e~r J d Ig2I Id (2.34)2 0 i i 0O r rd - 2 i

Recognizing that Eq. (2.34) is similar in appearance to Eq. (2.6) and

making use of the results derived in Section 2.2, one obtains

::1.1



} g tt 0 + Q, (2.35){O{2 ij I ii

where D is the instantaneous creep compliance function at time t,

t = t D(
1=00+ 2 r r Br)

Q are the hereditary strain components due to tensile creep at time

Qtj , t-Atst t-at e -X r q t-jat

"ii r g2 Br ij - er,ijlr

t
Bt e- 'r -e
B -r rr rat

and, q are components of the hereditary integral given by the

recurrence formula,

q -e q + t-g t-, 1 t
qrij =  r~j 2 ij g2 ij r"

Similarly, a term of the form J]{gtci in Eq. (2.31a) can be
2 ij

expressed as,

:J gt t } t t + Pt (2.36)
2-ij I ii ij'

where, J t is the instantaneous shear compliance function at time t,

t J+ t t1 0 + 2 r ]r l  r

P . are the hereditary strain componeits due to shear at time t,ij

Pt jgTt-.At,t t-At -er t-At,

ii .r 2  r ij - e Pr,ijl

t-nra

_t -e

r t

1r

1?



and, p tj are components of the hereditary integral given by the

recurrence formula

Pt -nr AO t-At t t t-At t-At It
r,ij = e r,ij' + [2 0 ij - g2  

0ij ] r

Substituting Eqs. (2.35) and (2.36) in Eqs. (2.31) and dropping

superscripts, one obtains

e D11 a D111 + (DI - i o22 + (D1 - Ji)33 + H11

e22 = (DI - Ji)a11 + Di122 + (DI - Ji)o33 + H22

Y12 = 2J1"12 + H12

e ('I - J0)11 + ('I - '1)022 + '33 + H33' (2.37)

where

H11 = Q11 + Q22 + Q33 - P22 - P33

H2 2 = Q11 + Q22 + Q33 - PII - P33

H12 = 2P12

H33 = Q11 + Q22 + Q33 - P11 - P22. (2.38)

Equation (2.37) can be expressed in matrix form as

{e' = INI{i + H . (2.39)

Note that the left hand side of Eq. (2.39) is a vector containing

the algebraic difference of kinematic strains tE} and dilatational

strains fij @},

13



T = {(E - e)9(c22 - e),Y1 2,(F3 3 - e)}, (2.40)

while {o} contains four components of Cauchy stress,

{0}T = {c1i-22,o12,"331,

and {H} is a vector of hereditary strains given by,

[H}T 1 {H1 1,H2 2,H12,H3 3}.

The matrix rm"] is a 4 x 4 coefficient matrix given by,

D: Oi-l) 0 (D1-J1)

NJ = ( 1-J1 ) 
0 ( 1-J1)

0 0 2JI  0

(Dl-Ji) (0I-Ji) 0 DI

Pre-multiplying Eq. (2.39) by IN!-', an explicit expression for stresses

in terms of strains is obtained:

JMI( e - *H ) , [MI = !NJ- (2.41)

Equation (2.41) provides a general viscoelastic constitutive

relation that can be applied to either plare stress, plane strain or

axisymmetric problems. For plane strain, the out-of-plane strain

component e33 is identically zero. The corresponding stress

component, )33' may be obtained from Eq. (2.41) by setting e3 3 = 0.

Since for the plane stress case 733 is identically zero, the

corresponding strain component e33 can be evaluated from Eq. (2.39) as

e33 = (OI - J1 )(Il + '22) + H33.

Note that the use of creep and shear compliances as material property

input allows the Poisson's ratio to be time-dependent. Hence, the

14



prsent formulation is applicable to any thermorheologically simple

isotropic viscoelastic material over any length of time.

For the special case where the Poisson's ratio is a constant with

time, then

= (1 + v)D(u). (2.42)

The matrix [N] takes the form,

[NJ = OD V i 0 -V

0 2(1+v)

-N 1

and, the corresponding hereditary strains are,

HII = Q11 - '022 + Q 33)

H22 = Q22 - -(Q11 + Q33)

H12 2(1 + ")Q12

H33 )33 "(Q11  
+  Q22 ) (2.43)

If the viscoelastic properties of a material are defined by its

bulk and shear compliances instead of the creep and shear compliances,

then the creep compliance D(.) in Eq. (2.27) is replaced by the bulk and

shear properties. Using the viscoelastic relationship betwen creep,

bulk and shear compliances given by,

D(') = 1 M() + ? J(), (2.44)

and substituting in Eq. (2.27), the relation in Eq. (2.39) is

obtained. However, for this case the matrix INI has the form,

15



M + J1 ) (M - J) 0 (M 1  -J

(IM 1J) (M+ J') 0 (1!M 1 )
[NJ 1 3 9 3 9 (2.45)

0 0 2J1  0
(M -J 1) (MI - 1J1 ) 0 112

I~M +. J)

and the corresponding hereditary strains are,

H (Q11 + Q2 2 + Q33 ) + 4 P1 1 - (P22 +P 33)

22 9 ( + Q + P22 - (P1 1 + P3 3)

H12 = 2P12

1 21H Q + P' (2.46)33 (Q11  Q22  Q33) i P33  (P11  22) "

2.4 Finite Element Model

This section describes the finite element impierrEntation of the

nonlinear viscoelastic constitutive law presented in Sections 2.2 and

2.3. Since viscoelastic materials often undergo large displacements

especially when subjected to creep type of loading, the geometrically

nonlinear analysis described in 11,21 has been incorporated into the

viscoelastic formulation.

Invoking the principle of virtual work and following the procedure

outlined in 11,21, one has
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i 1Mijrs lers6(l eij)dV + 7 I ij6(1 ij)dV

= - I iijS(leij)dV + f ifi6uidV + I itiuidS, (2.47)
V lijVI SI

where, 1Mijrs are the components of the viscoelasticity constitutive

tensor. The rest of the quantities and the superscripts in Eq. (2.47)

have the same definitions as given in 121. Let each displacement

increment at any time t be approximated as,

n
n Au .(Xl'x2)" (2.48)
j=1 2

Substitution of Eq. (2.48) into Eq. (2.47) gives

( L + [K')):u} = FL - (2.49)

where

[KLI = h. [B LIT IM]IBLjdA, h = thickness (2.50)

and [MI is the 4x4 viscoelastic constitutive matrix defined in Eq.

(2.41). Note that for the nonlinear viscoelastic case, the 'linear'

stiffness matrix IKLI is not really linear, but has nonlinearities

imbedded in it due to the presence of the material kernel functions (go,

g1, g2) in the matrix [MI. The nonlinear stiffness matrix 1K'j is the

direct result of the geometrically nonlinear formulation and is given by

IK'1 = h" IB"ITITIB 1IdA. (2.51)
A1

The definitions of matrices IBL1 , 1Bol, FL}, {F'} and V are the same

as in 121. The Cauchy stress components are computed by using the

viscoelastic relation,

{O = [MI({e' - .H}) (2.52)

which has been derived in Section 2.3. For a geometrically nonlinear

17



analysis, the vector fe} contains components of the Almansi strain

tensor

I auk aum ;un au
e () ) . (2.53)

km axm ax ax x km

It is evident that Eq. (2.49) contains two possible sources of

nonlinearities: material nonlinearity due to Schapery's law and,

geometric nonlinearity arising from the large displacement (and small

strain) formulation. In order to obtain a solution to this nonlinear

equation at any time step, the Newton-Raphson iterative technique is

used. The incremental displacement {fU}r obtained at the end of the rth

iteration is used to update the total displacement for the nth time

step,

ru r n u r (2.54)

The iterative procedure continues until a convergence criterion is

satisfied. After that, the solution proceeds to the next time step.

Note that for the first time-step, the initial cord&tion nr1 = 0 is

used.

3. MOISTURE DIFFUSION AND DELAYED FAILURE

3.1 Governing Equations for Diffusion

The nonlinear Fickean two-dimensional, diffusion model presented in

the present study is the one investigated by Lefebvre, et al. 1121. The

diffusion model can also be applied for penetrants other than moisture,

as long as the diffusion process is Fickean.

Fick's law for the two-dimensional diffusion of a penetrant within

an isotropic material is given by

18



D (- -) + L- (0 D =- (3.1)
a3X a ay )y 3t

where, c is the penetrant concentration, which is a function of position

and time, and D is the diffusion coefficient.

In order to model the transport phenomena in polymeric materials,

Lefebvre et al. [121 derived a nonlinear diffusion coefficient based on

the concept of free volume. According to this theory, the diffusion

coefficient for a polymeric material above its glass transition

temperature is given by,

0 -B{1/f - 1/fo}
D = T- Te (3.2)

0

where D is the diffusion coefficient, T is the temperature, f is the

free volume fraction, and B is a material constant. The subscript 'o'

denotes values at the reference state. It is then postulated that the

change in fractional free volume is due to changes in temperature,

penetrant concentration, and the transient component of the mechanically

induced dilatational strain. It is further assumed that these changes

are additive, which is similar to the assumptions made by Knauss and

Emri 1151. Thus

f = fo + 3. T + Aekk + 3yc . (3.3)

In Eq. (3.3), a is the linear coefficient of thermal expansion, y is the

linear coefficient of expansion due to moisture, N is an exponent for

the saturated state, and Lekk is the transient component of the

mechanically induced dilatational strain. The dilatational strain due

to the ambient stress state can be written as

ekk = ekk(O) + aekk, (3.4)

where ekk(O) and ekk are the instantaneous and transient components of

19



the mechanically induced dilatational strain ekk!

ekk(O) = 1 M(O)okk (3.5)

e 1 t - ( - (g2 k)d, (3.6)

where M(o) is the bulk compliance of the material. Combining Eqs. (3.4)

and (3.5), we obtain

Aekk = e - M(O)okk. (3.7)
k kk 3

Substitution of Eq. (3.7) into Eq. (3.3) and the result into Eq. (3.2)

yields

B 3(caT + yc N) + (ekk - . Mokk)
TB k 3 o kk. (3.8)

T = I - N - I (3l.
0 0 f + 3(caiT + yc ) + (ekk -3 Mo1kk)

From the viscoelastic formulation presented in Section 2, it is evident

that the dilatational strain ekk is dependent on the stress history,

temperature and penetrant concentration,

ekk = ekk(OkkT,c) (3.9)

Hence, the two sources of nonlinearity in Eq. (3.1) are moisture

concentration c and dilatational strain ekk. Consequently, in order to

accurately model the penetrant transport phenomena, the diffusion

boundary-value problem needs to be solved in conjunction with the

nonlinear viscoela-cicity boundary-value problem by using an iterative

procedure. The same solution procedure can also be applied for

diffusion in polymeric materials where the plasticizing effect of the

penetrant may cause the viscoelastic time-scale shift factor to be

concentration dependent,

a T a(,T,c) (3.10)
Tc
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-ne exAmple of Such a shift factor definition can be found in the work

of Knauss and Emri 1151, where the authors have used the concept of free

volume to define a shift factor

B_ (fo-aT + yC + xekk
a(T,C,ekk) exp{- + aAT + yc + 6ekk

where 'k is the coefficient of the dilatation term. Note that the

coefficients a and -y in Eqs. (3.8) and (3.11) are, in general, functions

of T, c and ekk but have been assumed to be constant for the sake of

simplicity. This assumption is valid for temperatures above the glass

transition temperature and below the boiling point of the penetrant.

3.2 Finite Element Formulation

Fick's law for two dimensional diffusion in a homogeneous isotropic

material is given by,

( ) ('C) = 2- c in 2 (3.12)
)X X )y 3y it

subject to the boundary conditions,

D c n + D 2c n + q 0 on 1 t 0 (3.13)jX x y y

c = c on ,2 t 0 (3.14)

and the initial condition,

c = c in c , t 0 (3.15)

where, Q is the two-dimensional region in which diffusion occurs,

and F is the boundary of Q.

The finite-element formulation of Eqs. (3.12)-(3.15) can be

developed following the variational procedure used by Reddy (171. The

time dependent moisture concentration is approximated over an element
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Qe as,

N
ce (x,y,t) = 0 e(xy)ce(t) (3.16)

j=1 J J

where N is the number of nodes per element. The resulting finite-

element equations cast in a matrix form are given by

[M(e)I{} + [K(e)I{c} = (F(e)} (3.17)

where

, )  eodXdY (3.18a)
13 e 13j

,, ~e e ~e
K) :. D(_ -I + -- -1 )dxdy (3.18b)

j x ay 3y

F~) _r qds. (3.19)

The time derivative Lc} is approximated using the e-family of

approximation,

Sc~nl  - c~nS  + (1 - 3){C = n+1 for 0 e 5 1 (3.20)

n++(1 n tn+1

where&n is the time step and c denotes the value of cj at time

tn. Using the approximations (3.22) in (3.18) for time tn and tn+1

gives

IA(e), C n+ g - [B(e)ce)}n = 0 (3.21)

where

IA(e)j = [M(e)l + eatn+l [K(e),

[B(e), = IM(e)I - (1 _ 8)6tn n+1 K(e)l

{p(e)} . atn+ (9 {F(e)} n+I + (I - 9){F(e)}n). (3.22)
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Recognizing that a source of nonlinearity in the form of the diffusion

coefficient 0 is imbedded in the matrix [K(e)j, the Newton-Raphson

technique is employed to solve for the concentration {c}n+1 at each time

step. Note that for n = 0, the vector .c! in Eq. (3.21) is known from

the initial conditions.

3.3 Delayed Failure: Uniaxial Formulation

When a viscoelastic material undergoes deformation, only a part of

the total deformation energy is stored, while the rest of the energy is

dissipated. This behavior is unlike elastic material where all the

energy of deformation is stored as strain energy. Reiner and Weisenberg

151 postulated that it is this time-dependent energy storage capacity

that is responsible for the transition from viscoelastic response to

yield in ductile materials or fracture ;n brittle ones. According to

this theory, failure occurs Nhen the stored deviatoric strain energy per

unit volume in a body reaches a certain maximum value called the

resilience, which is a material property. Note that when there is no

dissipation, that is, when the material is elastic, then Reiner-

Weisenberg criterion becomes identical to the von Mises criterion.

Consider the single Kelvin element shown in Fig. 1, subject to the

uniaxial tensile load a(t). The total strain response e(t) due to the

applied stress can be divided into two components: the instantaneous

respone eo, and the transient response el(t),

e(t) = e0 + e(t) (3.23)

For uniaxial creep, the applied stress o(t) is given as

a(t) = a H(t) (3.24)

where H(t) is the unit step function.
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RPMr A Single Kelvin Unit Subject to Unisxial Streu.
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Substituting Eq. (3.24) into Schapery's nonlinear uniaxial single

integral law given by Eq.(2.1) and expressing the transient creep

compliance D () as

0c(v) = O0 - DI(l - e 1 (3.25)

leads to,

e(0) = g 0 o0 + g g2loDj(1 - e ) (3.26)

where is the reduced time defined in Eq. (2.2).

Comparing Eq. (3.26) with (3.23), it follows that

eo = g0 D0o0

e1() 1EJ(1 -e 1;
e,( )  = glDl(l - e 1 )92'o .  (3.27)

For a given applied stress 70, the stress developed in the nonlinear

spring with compliance D0 g0 iss and the corresponding strain

is es . For the spring with the nonlinear compliance Dig, the stress isI 0

given by,

se
1 g 101  (3.28)

where the superscript s' denotes qjantities related to the spring.

From Fig. I it is evident that e1 and e1 are equivalent. Hence,

= g2 ( I - e ) (3.29)

The total energy, Ws , stored in the two springs over time t is (see Hiel

et al. [141),

W I e 0 s s
W= de + seldtj 0 0 11

S 2 1 I 2 2
g gl0 1 I - e 1 . (3.30)
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For a viscoelastic material represented by multiple Kelvin elements

in series, Eq. (3.30) takes the form,

Ws  Ig 2 1 gg 2 2  n ID (1 - e r . (3.31)

S2 0 0 2 g2 r= r )331

According to the Reiner-Weisenberg hypothesis, failure occurs when the

stored energy Ws reaches the resilience of the mate-ial. Denoting the

resilience as R, the expression for the time dependent failure stress

obtained from Eq. (3.31) for uniaxial stress state is,

fR X 112 (3.32)
:r = n1/2
1i 2 _ e X X2
SgoDo + glg t [r~l e

3.4 Delayed Failure: Multiaxial Formulation

If c' '2 and ,3 are the principal stresses at any point in a

viscoelastic material, then by definition, the shear stresses are zero

on the principal planes. In order to simplif the derivation, let 4t be

assumed that the viscoelastic material is represented by means of a

single Kelvin element (see Fig. 1) in each principai direction. The

applied multiaxial creep stresses in the material principal directions

are given by,

11= IH(t)

22 
=  2 H(t)

= 3 '3H(t). (3.33)

Substitution of Eqs. (3.33) in Eqs. (2.31) and (2.32) results in the

following expressions for the corresponding viscoelastic strains,

IJ J -\
o 0

e1 1(t) D01 -1  + (1 )q) (1 -+D 31 + Dl[(1 _ e r )2

+ e(1 - er + (1 e Y)gc22 + (- e r )
1
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s +- ( + +2 " I l

OS ej l ) + (1 + e crj+ (1 + ) 2( e )ciij.

(3.44)

4. NUMERICAL RESULTS

In this section results of a number of linear elastic, linear

viscoelastic and nonlinear viscoelastic analyses are discussed in light

of available experimental or analytical results. All results are

obtained using NOVA on an IBM 3090 computer in double precision

arithmatic.

4.1 Elastic Anaiysis of a Composite Single Lap Joint

Renton and vinsor 181 used a closed form elastic solution to

conduct a parametric study of the effect of adherend properties on the

peak stresses Aithin the adhesive in a composite single lap joint. A

similar pa-ametric study was carried out using the finite element

program NOVA. The gecmetry, finite element discretization and boundary

coidit'ons for tre conpcsi'e lap joint are shoyn in Fig. 2. For the

sake of s,7m1icity, orgy identical adherends are considered. Each

adherend is made up of seven laminas of equal thickness. The

orthotropic material properties for a lamina are given in Table 1. In

order to maintain material symmetry about the laminate mid-plane and

thus eliminate bending-stretching coupling, a e,/ /- J/O/-eG/0C/eG ply

orientation was selected for the analysis. Note that this type of ply

orientation places the el ply immediately adjacent to the adhesive

layer. The adhesive used is FM-73 and its isotropic linear elastic

properties are listed in Table 2. The adhesive layer is modeled using
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Tdble 1. Ortmjtrcpic Mdtpridl Froperites for Composite Adherend.

Q1 -4.885XI03 MPa

21I? - )3 4.137KI1C3 MPa

C22 - ')3 .'62"0O3 MPa

2.3 (26 M~d

66 3.4474Q03 MPa
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Table 2. Isotropic Linear Elastic Properties for FM-73.

E =2.78x133 MPa

G = 1.01K10 3 MPa

,38
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sixteen eight-noded quadrilateral elements a'ong its length and two

elements through its thickness. A series of elastic finite element

analyses is performed to study the effect of ply orientation, lamina

primary modulus (Q1 1 ), and geometric nonlinearity on the peak stresses

in the adhesive.

In order to study the influence of ply orientation on the adhesive

stress distribution, stress analyses were performed for e = 00, e = 15',

= 45', and 3 = 90 respectively. The results are shown in Figs. 3

and 4. The plots show the variation of stresses along the upper

bondline of the overlap. The parameter x/c is the normalized distance

from the bond centerline such that the value x/c = -1 corresponds to the

left-hand free edge of the bond overlap. It is evident from these

figures that an increase in the ply orientation angle , causes the peak

stresses to increase near the free edge cf the bond overlap. The

adherend with a 0/90 ' p'y orientation (cross-ply) shows a 28X increase

4n peel stress and a 174 increase in shear stress over the corresponding

\alues for a 0 (unidirectional) ply orientation. This is not

surprising since a cross-ply adhererd has a lower bending stiffness

which results in a larger lateral deflection causing higher stress

(oncentratiors at the overlap ends.

The influence of the lamina primary modulus (QII) on adhesive peel

and shear stresses can be seen in Figs. 5 and 6 respectively. A

unidirectional (0-degree) adherend ply orientation is used for this

analysis. The two fiqures show a significant increase in the peak

adhesive stress as the value of Q1 decreases. This is understandable

as a more flexible adherend would undergo larger bending and hence

produce higher stress concentrations at the overlap ends.
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Harris and Adams [191 conducted large displacement finite element

analyses on a single lap joint with aluminum adherends and observed

significant reduction in peak stresses at the edge of the adhesive as

compared to linear results. In order to observe the effect of geometric

nonlinearity on a single lap joint with laminated composite adherends, a

large displacement analysis was performed using the program NOVA. Due

to its greater susceptibility to bending, cross-ply laminated adherends

were used for this analysis. The results can be seen in Figs. 7 and

8. The geometrically nonlinear analysis results in a 30% reduction in

the peak peel stress and a 15% reduction in the peak shear stress. The

horizontal shifting of the nonlinear curves is due to the configuration

coordinate update required by the large displacement analysis.

4.2 Nonlinear Viscoelastic Analysis of a Composite Single

Lap Joint

A nonlinear viscoelastic analysis of a lap joint made of compos-ite

material was carried out over a time period of forty hours using NOVA.

The specimen geometry and the finite element discreiz?1lon are the same

as for the elastic analysis as shown in Fig. 2. However, instead of a

uniform end traction, a uniform end displacement of 0.363 mm is applied

to the end of the joint and is held constant with time. The adherends

are made of symmetric cross-ply laminates whose properties are given in

Table 1, ,,ile the adhesive used is FM-73 and its creep compliance and

Schapery parameters can be found in Table 3.

Figures 9 and 10 show the variation of shear stress and shear

strain respectively across the entire bond length over a period of 4'

hours. The sharp peak on the left-hand edge is due to the presence of a

re-entrant corner and also due to the difference in material properties.
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Table 3. Material Data for FM-73 Unscrimmed at 30'C.

Elastic Compliance, Do: 360 x 10-6 /MPa

Poisson's Ratio, v: 0.38

Coefficient of Thermal Expansion, a: 6.6 x 10- 5 m/m/OK

Prony Series Coefficients:

DI = 1I.05xO-6/MPa TI = 10 secs.

D2 = 12.27x10-
6/MPa T2 = 102 secs.

D3 = 17.35xlO 6/MPa -3 = 10 3 secs.

D4 = 21.63xlO- 6/MPa -4 10 4 secs.

0 = 13.13xlO-6/MPa 105 secs.

D6 41.78xO-6/MPa 6 10 6 secs.
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Figures 11 and 12 provide a close-up view of the sheir stress arI -1i-

gradients at the free edge. As might be expected, the shear stress

undergoes relaxation which results in a 36% decrease in tne peak value

at the left hand edge. The stresses have been normalized with resppct

to an average shear stress value of 4.5 N/mm 2 . The peak shear strain,

however, shows an increase of 35% over the same period of timu.

Similarly, Figs. 13 to 16 reveal that while the peak values of the Fe?

and axial stresses decrease by 26% and 32% respectively, the

corresponding strains show a respective increase of 639 and 6%. The

reason that the strains increase with time even though the joint end

deflection remains fixed, is because the adherends are modeled as

elastic continuums. As the stresses in the adhesive relax with time,

the elastic adhererds deform to attain a new equilibrium configurat'o

and this leads to an altered state of strain within the adhesive.

Hence, it is very important that the elastic nature of the adherercs :-)v

taken into account in an analysis. Also, the significant increase Th

adhesive strains with time is a viscoelastic pheno-.)c-n and teerefcrp

cannot be precictec by means of a purely elast'c dnalysis. Tis fact

emphasizes the need to model the adhesive ayer as a viscoelastic medium

in order to be able to predict the long-term durability of a bcnded

joint.

4.3 Nonlinear Fickean Diffusion in Polystyrene

In order to validate the diffusion model implemented in NOVA and

discussed in Section 3, results from a nonlinear diffusion analysis

presented in 1201 are used. The test problem involves unsteady sorption

of a penetrant in a semi-infinite medium for a diffusion coefficient

that is an exponential function of penetrant concentration, that is,
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J - e ,p (kC/Co). Finite element predictions were obtained for k =

-. 14 a-d k = 3.912 and the results were compared with the published

results represented y the solid lines in Fig.17. Excellent agreement

is observed for the two valus of the coefficient k.

Levita and Smith 121] conducted experiments to study gas transport

in polystyrene d ;und that the diffusion coefficients for gases

decreased with time when the polystyrene film was subject to a constant

uniaxial strain. This effect was attributed to the continuous free

volume recovery (densification) in the polystyrene specimen at constant

strain. The study also indicated that larger free volume elements

1-rease in e faster than the smaller ones as volume recovery

2,-qr.,sses. Lsing the results published in 1211 as a guideline, NOVA

,--ei to s,,J) the time dependence of the diffusion coefficient for

Sic:e gas i a polystyrene film at constant strain. For this

,>s. t?~o "rFature and moist.re concentration effects presented in Eq.

3.-) -.ere 'e<cec-ed, resulting in a diffusion coefficient that is

fu-,-ior of -he trarsient component of the dilatational strain

r ; rr, s a measure of the change in the free volume. Figure

Ss'<,,s tre it',an of the diffusion coefficient with time for three

strain levels. The material properties for polystyrene which

.ere *ti'nec from 12-1 are given in Table 4. From Fig.18 it is

evident that, independent of the strain level, the diffusion coefficient

rea(+hs a peak value at around t = 1 hour and then slowly decays to the

rPfor-'rce ,value, Do0 This behavior can be attributed to an initial

'norease in free volume due to the application of the uniaxial strain,

1o)1l:od Lb a oontinuous recovery in free volume (densification) at a

or+,ti.t stran as the polystyrene film undergoes relaxation. A larger
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Table 4. Material Properties for Polystyrene at 50 C.

Bulk Compliance:

Mo = I.2xlO-
4 /MPa

M, = 0.2896x10-4/MPa Ti 1.513x10 2 sec.

M = 0.2246xI0-4/MPa 2 = 1.515x,03 sec.

M3 = 0.3721x10-4/MPa T3 = 1.515x,04 sec.

M = 0.1354xl0- 4/MPa T4 = 1.515x105 sec.

Shear Compliance:

Jo z .0x10-3/MPa

Jl = 2.16/MPa I= 1.515xi0 8 sec.

J2 = 2.92/MPa 12 = 1.515x1010 sec.

J3 1.38/MPa -3 515x012 sec.

J4 = 2.88/MPa 4 = 1.515x,01 3 sec.

J5 z 2.31/MPa 5 = 1.515x,014 sec.

J6 z 3.59/MPa 6 = 1.51,xi01 sec.

J7 = O.648/MPa 7= 1.515x,0 1 6 sec.

Reference free volume fo = 0.033

Oiffusion coefficient C. = 9x1O -6 mm2 /sec
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applied strain produces larger initial dilatation, and this results in a

higher peak in the diffusion coefficient. Figure !8 also reveals that

the time rate of free volume recovery, and hence the time rate of

decrease in the diffusion coefficient, is proportional to the applied

strain level.

The influence of penetrant molecule size on the diffusion

coefficient for gases in polystyrene was studied by varying the

magnitude of the material parameter 8 in Eq. (3.8). The temperature and

strain were held constant at 50'-C and 1.8Xe respectively. The prediction

obtained from NOVA are shown in Fig. 19 for two values of B. The faster

rate of decrease in the diffusion coefficient for a higher value of B

implies that the larger free-volume elements decrease in size faster

than the snaller~ ones as volume recovery progresses. The NOVA

predictions are qualitatively in good agreement with the results

presented in 121!.

When a polymeric material is in the rubbery state, equilibrium is

reached very rapidly in response to variations in temperature, stress

and penetrant conentration. By contrast, a material in the glassy State

is not in thermodynamic equilibrium dnd tne response of the free volume

to changes in external conditions is delayed. This metastable state

causes the free volume to slowly collapse with time until equilibrium is

reached. This phenomenon is known as physical aging and causes

relaxation processes to take place over a longer time. Struik 1231

proposed that for a Material in the glassy state, effective time \ is

related to actual time t by,

t ( t ed

O t e +(41
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where t e is the aging time at the start of service life or testing

and w is a constant such that 0 < w < 1. For such a material, the

definition of reduced time given by Eq. (2.2) is no longer valid and

should be modified to,

S (a ds (4.2)
0

where a s  is the shift factor.

The effect of physical aging on the diffusion coefficient for

carbon-dioxide gas in polystyrene was studied by implementing Eqs. (4.1)

and (4.2) in NOVA. The values of temperature, strain and te were set at

50'C, 1.8% and 24 hours respectively. Figure 20 shows that an increased

physical aging denoted by a higher value of the parameter ,, causes the

diffusion coefficient to decay slower than the one for which is

lower. This behavior is expected since increased physical aging causes

the free volume recovery to take place over a longer period of time.

Note that when there is no physical aging, - and te are equal to zero

and k is identically equal to t.

4.4 Xon2ir!ear Viscoelas ic ArnaIysis of a Butt Joint

includi ng Moisture Diffusion

The effect of a change in the free volume of a polymer on its

viscoelastic response was discussed by Knauss and Emri 115]. They used

the unifying concept of the free volume by considering that fractional

free volime depends ori three variables: temperature T, moisture

concentration c, and mechanically induced dilatation a. Lefevbre et al.

[121 extended the free volume concept to define a nonlinear diffusion

coefficient, which results in a coupling between the viscoelasticity and

the diffusion boundary value problems (see Section 3.1). The influence
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of th-s coupling on the viscoelastic response anc moisture Ji4f sicn

within the adhesive layer of a butt joint was investigated by using the

program NOVA. The specimen geometry and finite element discretization

are shown in Figs. 21 and 22, respectively. A uniform axial

displacement of 0.1 mm is applied at the end of the joint and is held

constant with time. The adherends are made of aluminum and the adhesive

used is polystyrene. The various material properties are listed in

Tables 4 and 5. The selection of polystyrene as an adhesive was

prompted by the fact that it is one of the few polymeric materials that

have their viscoelastic properties and diffusion parameters adequately

documented. The normalized moisture concentration at the free edge of

the adhesive layer is unity, and the initial concentration throughout

the adhesive layer is zero. The tests are conducted at the reference

temperature of 50 C.

Figure 23 shows the moisture concentration profiles 4ithin the

adhesive layer at three different times when trere is no coupling. In

this case the diffusion coefficient remains constant with time, that is,

D = 0 . Figure 24 cho.,s th'e mosture concentration profiles for the

case Ahere tnere i, vi scoelastic :oling only, that s, vhen the

diffusion coefficient depends on the transient ccmponent of tie

dilatational strain. Figure 25 depicts tne case where there is full

coupling, that is, the ciffusion coefficient is a function of the

dilatational strain and the moisture concentration at any given point in

the adhesive. Conversely, the viscoelastic shift factor is now a

function of the dilatational strain and the moisture concentration.

Figure 26 presents the results for each of these three cases for

comparison at time t = 8 hours. From these figures it is evident that
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Figure I Specimen Geometry and Boundary Conditions for the Analysiq of a Butt
Joint (L - 200.5, b - 30.0, e - 0.25, all dimensions in mm., Applied Stres -
10 MPa.).
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Figure 22 Finite Eicmncnt Discrctization and Boundary Conditions for the Analysis Of
a Butt Joint.
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Table 5. Properties for Elastic Analysis of a Butt Joint.

Materials E(MPa)

Steel 2.07xl0 5  0.29

Aluminum 0.7x05 0.33

Eponal 5.8x10 3  0.33

Rigid Epoxy 2.2x,03 0.33
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N5

the effect of coupling is to accelerate moisture diffusion in the

adhesive. The mechanically induced dilatation together witn the

swelling due to moisture sorption results in a higher free volume

fraction within the adhesive which, according to Eq. (3.9), causes

diffusion to proceed faster over the same period of time. It is to be

noted that in Fig. 26 the curves become less concave as the coupling

increases, which is in good agreement with the results published in

[201.

Figures 27 to 30 show the variation of the stresses and strains

with time within the adhesive layer in the butt joint when there is no

coupling due to moisture induced swelling. Mathematically, this implies

that y= 0 in Eq. (3.3) and (3.11). From Figs. 27 and 28 it is evident

that the stresses do not relax significantly over the time period of the

analysis. This is because the elastic adherend acts as a spring causing

the adhesive to creep even though the joint end displacement remains

fixed. However, there is a slight relaxation in the normal stress as

one moves towards the center of the bond. The large increase in the

strains, as shovn in Figs. 29 and 30, is due to the creep caused by the

strain recovery in the elastic adherend. This observation is supported

by Fig. 31 which shows that the normal strain in the adherend

immediately adjacent to the interface undergoes significant reduction

with time. The decrease in the adherend normal stress, as shown in Fig.

32, reflects the concurrent stress relaxation that occurs in the

adhesive and triggers the strain recovery in the adherend.

Figures 33 to 36 show the effect of moisture induced swelling on

the viscoelastic stresses and strains in the adhesive layer.

Mathematically, this means y has a nonzero value in Eqs. (3.8) and
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(3.11). The actual value of , selected for this stucy is G.CI. For

this value of -f, the moisture absorbed causes large swellinQ strai-n;

within the adhesive, which increase in magnitude as the diffusion

progresses. This moisture induced swelling strain c,,.ses a -eduction .

the mechanically induced normal strain and hencze a >iwer value for the

normal stress in the adhesive. This effect can be observed in Fig. 33

where progressive swelling has caused a 25% reduction in the peak normal

stress over a period of 8 hours. It is interesting to note that the

difference between the two stress curves diminishes as one moves towards

the center of the bond. This behavior is expected since there is very

little moisture near the center of the bind andi sC the sLress reduction

is primarily due to viscoelastic relaxation. The larce increase in the

adhesive strains, is seer in Figs. 3' n-36 , is c.ue to the idnere-1

acting as a elasti, sDrzrg.

Figure 37 snc.is t', 'Vuence of the ioist.rc cceffIcient , jr' t~e

normal stress in tne ichesive layeaf.]er eignt hocrs oi foruticn. ,s

can be seen, the s,.4elling induced for i .C0[ re>u's ;n a

significant lo,.wer ncrrial stress rear tie fe'- edge as comparec to ne

case where 0. Away from the free edje, th t.o stress curses noocar

to merge as -e Toves tO~drdS tr'-nt,' , -f 're :ord. This is 3eiausc

the low mcis-.re concentraticrs present in the cord irter or is

insuffic :rt to cause any siqnificant eduction in the normal stress due

to swel rq.

4. 5 , l. i 1 ?' - .:: .jO. flt

The theory Dre s-.teI in Se, s. 3.3 and 3.4 ,as applied to predict

viscoelastic c:reep failure w:thin the adnesive in a butt joint. The

specimen geometry and the finite element discretizaticn are the same as
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shown in Figs. 21 and 22, respectively. [he adnerenJ is made of

aluminum and its material properties are given in Table 5. he adhesive

used is FM-73 and its tensile creep complience is listed in Table 3.

The failure parameter (R) for FM-73, also kno)wn as tre rq'1 nce, 'as

obtained by computing the area under the strcs_-'<tr'ain curve prese-".e

in [241. This procedure yielded a value of the resilience as 1.3

3N.mm/mm . Note that the area under the visco-plastic yielo plateau was

not included in computing the value of R. According to the Reiner-

Weisenberg theory, failure occurs when the stored energy per unit volume

in the body reaches the resilience P, for the material. Using this

postulate as a failure critericn, NCVrk was utilized to predict failure

in the adhesive lajer of the hjtt Jo nt suoject to a constant unia, al

tension. The 4rf!Lece o co:pliec stress level on de'ayed failor,,as

studieo by usinc a stress level of 69, 60, and 54 MPa respectively, In

all three cases, faP.ure ,as i-itiated in the alhesive ele,.ent oca e-

right at the free-edge ]n.J iTmediately ac,jacepr -- t-n 'nteIta:e. t

was also observed that the directior of the planp f-: o:re was always

inclined at an angle of 18 , counter-clock.,se to te x-axis. Since the

direction of failure coincides with the lietion of principal stress,

it is evident that a multiaxial stlte -) stress erIsts rear the free

edge, even thcugh the applied stress is uniaxial. Figure 38 shows the

variation of normal (or rreeo) strain with time at 30 C for the eement

in which failure is first initiated. The right hand termination pcint

on the curves indicate the noint at whichJ failure occured. it is

observed that far an apo ied stress level of 69 !'Pa, the tiTe to ta lure

(tF) is 1.5 sec-s. 'n other ods, for this stress level, failure occurs

almost instartareously. For an apolied stress )f 60 MPa, t increases
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to 400 secs. Reducing the applied stress to 4 MPa resilts in a tile to

failure of approximately 10 hours. These results are qualitative] in

good agreement with the results presented by Bruller [6! foa PMMA.

From the above observations it is clearly evident that for

iscoelastic polymers like FM-73, the time to failure depends strony,]

on the applied stress level. Figure J? shows the evolution of stored

energy with time for different stress levels. For very high applied

stress levels, almost all the strain energy is conserved as stored

energy and failure occurs almost immediately. For intermediate levels

of applied stress, viscoelastic creep causes a part of the strain energy

to be dissipate.. As a resu't, only a fraction of the total strain

energy is conserved as stored energy. Consequently, the stored energy

builds up slo l,. 3nai' ti l eaking vesse ':, result~ng in de'>edi

failure. F~r ,~F- ~-Pss C. triat is o& ow a certain thresrol

value for a iit Ta.*: -", te ene' c c nsttte a .r.e

fraction of the t-t-i) .tr -u ''. in that case, *no stoel enerc-

would increase too -Ic<,' , eceei the resi lin:r , -e material c'er

any realistic length ct Lme, and nence tner- ,oulo be no failure even

if the applies stress acts indefinitely.

n. SUMMApy AND CON(LUSiV2NS

5.1 Genpral Summary

The adhesive layer is modeled using Schapery's nonlinear single

integral constitutive law for uniaxial and multiaxial stress states.

The effect of temperature and stress level on the viscoelastic response

is taken into account by a nonlinear shift factor definition. Penetrant

sorption is accounted for by a nonlinear Fickean diffusion model in

which the diffusion coefficient is dependent on the temperature,
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penetrant concentration, and the dilatational strair. A ce'ayel faiure

criterion based on the Reiner-Weisenberg failure theory nas also been

implemented in the finite element code. The prcgram i. validated -y

comparing the present results with analytical and ecperimental results

available in the literature. The program capanility has been extended

to account for laminated composite adherends and adesives with a time

dependent Poisson's ratio. In general, the computer program NOVA, is

believed to provide accurate predicticns over a wide range of specimrn

geometries, external loads, and environmental conditions.

5.2 Conclusions

The results presented in Section 4 underscore the importance of

modeling the adhesive in a bcnded joint as a viscoelastic material.

This allows the analyst to predict the large increments in adnesive

strains that occur 4ith time and cannot be prp-icted by a pure'y elastic

analysis. Furthermore, other events (such as moisture diffusion 3a-1

delayed failure), that are highly relevant for horde4' joint analysis,

cannot be accurately predicted unless viscoelastirity is taken into

account. At high stress levels, nonlinear viscoelastic effects can

produce creep strains that are significantly larger than the linear

viscoelastic predictions and such effects, therefore, should be

accounted for. The effect of change in Poisson's ratio with time in

some polymers have a significant bearing on the final response and must

be taken into account in order to obtain accurate results.
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